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We study dynamical scaling properties of the two-dimensional surface growth models with global con-
straints. These include the growth model from a partition function Z=��h�r����h=hmin

hmax 1
2 �1+znh�, multiparticle-

correlated surface growth models and dissociative Q-mer growth models. The equilibrium surfaces of all the
models except the dimer model show the same dynamical scaling behavior W2�L , t�
= �1/2�KG�ln�L g�t /LzW�� with zW=2.5 and KG=0.916, whereas the surface in the dimer model has a correc-
tion to the scaling. The growing �eroding� surfaces have two phases. The models with z�0 show the normal
Kardar-Parisi-Zhang scaling behavior. In contrast the models with −1�z�0 and multiparticle-correlated
growth model manifest grooved surface structures with �=1. The growing surfaces of Q-mer models form
rather complex facets.

DOI: 10.1103/PhysRevE.72.012601 PACS number�s�: 68.35.Ct, 02.50.�r, 05.40.�a, 64.60.Ht

Recently there have been some studies on surface growth
models with global constraints. They are dissociative Q-mer
models �1–3�, Q-particle-correlated growth �QP� models �4�,
self-flattening �SF� surfaces �5�, and self-expanding �SE� sur-
faces �6�. Some of these models have shown to be unified
through the partition function �7�

Z = �
�h�r���

�
h=hmin

hmax 1

2
�1 + znh� , �1�

where the summation is that over all possible surface height
configurations �h�r��� and nh is the number of sites to satisfy
h�r� , t�=h in �h�r���. The partition function �1� for z=0 is
equal to that of SF growth model �5� in which the growing
�eroding� at the globally highest �lowest� column is sup-
pressed. Z with z=−1 is exactly equal to Z of the two-
particle-correlated growth �2P� model �4� with the global
evenness constraint. The ordinary restricted solid-on-solid
�RSOS� model �8� corresponds to the case z=1. In the
Q-particle-correlated model �QP model� only the simulta-
neous deposition �or evaporation� of Q particles at the ran-
domly chosen Q columns of equal heights takes place. QP
models have been suggested to resolve the so-called sector-
dependent �or initial-morphology-dependent� problem of the
dissociative dimer growth model �2�. In the Q-mer models
particles can deposit �or evaporate� only in the Q-mer form
of equal heights.

Recent studies on these models in one spatial dimension
have shown that scaling properties of these models cannot be
classified as the well-known classes such as the Edward-
Wilkinson �EW� class �9� or Kardar-Parisi-Zhang �KPZ�
class �10�. The one-dimensional �1D� equilibrium surfaces of
all QP models �4�, Q-mer models of Q�3, SF model �5�,
and growth models from Eq. �1� with z�−1 �7� have been
shown to scale as Ws�	W�t�LzW��
L���=1/3�. However
the dimer model, which has nonergodicity, has been shown
to have � somewhat smaller than 1/3 �4�. The growing
�eroding� 1D surfaces of QP models �4� and the models from
Eq. �1� with z�0 �7� have been shown to form a certain
groove-type morphology with �=1. Especially the growing

1D surfaces of the Q-mer models have a special faceted
structure �2,4�. In contrast, the growing surfaces of the mod-
els from Eq. �1� with z�0 �7� show the KPZ scaling behav-
ior ��=1/2�.

Compared to the studies in one-dimension, these models
on higher-dimensional substrates have not intensively been
studied yet. Recently Lee and den Nijs �11� numerically
found that Ws for the two-dimensional �2D� equilibrium sur-
face in the dissociated dimer model scales as Ws

2


�1/ �2�KG
A��ln L with an anomalous value KG

A =0.988 in-
stead of the conventional logarithmic behavior Ws

2


�1/ �2�KG
0 ��ln L with the equilibrium RSOS value KG

0

=0.916 �12�. They �11� argued that the numerical result
KG

A �KG
0 could be an intrinsic property of the globally con-

strained models or the partition function Eq. �1�. They also
argued from an analytic theory that Ws for the models from
Eq. �1� could scale Ws

2
 ln�L / �ln L�1/4�, which could explain
the anomalous behavior of Ws with KG

A of the dimer model.
However, the anomalous behavior can be found only in the
dimer model as we shall see, and the dimer model has been
shown not to be described by Eq. �1� with z=−1 due to the
sector-dependent problem �3,4�. Furthermore, if one believed
such a theoretical argument, the SF model �or the model with
z=0� should have such correction as ln�ln L�. In reality, a 2D
SF surface �5� has been shown to satisfy the dynamic scaling
relation W2�L , t�= �1/2�KG�ln�L g�t /LzW�� with zW=2.5 and
KG=KG

0 =0.916, and has no numerical evidence for the scal-
ing correction. An analytic theory �13� based on the SF par-
tition function Z→��h�r���exp�−	S� with S=hmax−hmin+1
also suggested the possibility of the absence of the correction
in two dimensions. So the reported results on 2D surfaces of
the globally constrained models until now are somewhat
confusing and thus there needs to be a study to resolve the
contradicting situation.

Another motivation for the study is as follows: In the 1D
SF point z=0 in the parameter space of z was shown to act as
a stable fixed point in the sense of renormalization group
�RG� transformations �7,11�. This result was shown not di-
rectly by the RG theory, but numerically and by analytic
arguments based on the partition function �1�. This result
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means that the growth models from Eq. �1� with z�−1, ex-
cept for z=1, belong to the same universality class. In this
sense it is very important to show all the models except for
z=1 in two dimensions satisfy the same scaling behavior. If
they belong to the same universality class, then the SF point
z=0 is also the stable fixed in two dimensions. If this is the
case, the robustness of the 2D scaling with zW=2.5 and KG
=0.916 will strongly support an exact RG theory for globally
constrained models with z=0 as a stable fixed point in future
studies.

In this paper, we want to study 2D globally constrained
growth models in a comprehensive and unified way. First 2D
equilibrium surfaces of growth models from Eq. �1� with z
�−1, which include SF and 2P models as special cases, are
studied to show that the dynamical scaling with zW=2.5 and
KG=0.916 robustly holds for any physically relevant z�z�
−1� except for z=1. Two-dimensional equilibrium surfaces
of QP models and Q-mer models with Q�3 are also studied
to show the same scaling behavior. However, the dimer
model shows the anomalous behavior KG

A =0.988, which
should come from the sector-dependent behavior as in a 1D
case. Compared to the equilibrium surfaces, studies on 2D
growing �eroding� surfaces of the SF model and the SE
model have been reported �5,6�. We also need a comprehen-
sive and unified study of 2D nonequilibrium surfaces, which
can give a unified picture for the various globally constrained
models.

In this paper, all the models are defined on a 2D square
lattice. The surface height configurations �h�i , j�� are im-
posed to satisfy the RSOS condition �h�i±1, j±1�−h�i , j��
�1 �8�. Details of the growth models from the the partition
function �1� �7� are as follows. First, a site �i , j� is randomly
selected. Then we decide the deposition �evaporation� at-
tempt h�i , j�→h�i , j�+1(h�i , j�→h�i , j�−1) with the prob-
ability p�q=1− p�. Next, the weights w(�h�r���)=�h=hmin

hmax 1
2 �1

+znh� before the deposition �evaporation� attempt and
w(�h��r���) after the attempt are calculated. We can then de-
fine the acceptance probability Pa as Pa
	w(�h��r���) /w(�h�r���). The new configuration is accepted
only if Pa is larger than a random number R�0�R�1�.

In the 2D Q-particle-correlated �QP� growth model Q
sites �r�1 ,r�2 ,… ,r�Q� are randomly selected. These sites do not
need to be adjacent to one another. If all the heights �h�r�k��
are not the same, the Q sites are discarded and a new set of
Q sites is randomly selected until �h�r�k�� are the same. Then
simultaneous deposition �evaporation� of Q particles, h�r�k�
→h�r�k�+1(h�r�k�→h�r�k�−1), is attempted with the probabil-
ity p�q=1− p�. The QP model includes the Q-mer model as a
special case. In the Q-mer model only Q sites adjacent to one
another are selected. Otherwise, Q-mer models are the same
as the corresponding QP models. In this paper we mainly
think of dissociative dimer and trimer growth models. We
also consider the dimer model with monomer diffusion along
the surface, in which the diffusion to a new terrace is forbid-
den �2� for the global evenness constraint. In the dimer
model with the diffusion, the hopping of a monomer to a
nearest neighbor is attempted with the probability r�=1− p
−q�, where p�q� is the probability of a dimer deposition
�evaporation�.

To investigate the scaling property of the surfaces, we
measure the root-mean-square surface fluctuation W as func-
tion of time t and system size L. All simulations are started
from the flat surface �h�i , j�=0� and a periodic boundary
condition is always imposed. We run simulations for the sys-
tem sizes L=23 ,… ,27. W is obtained by averaging over at
least 300 independent runs for each system size.

We report the results for the equilibrium surfaces �p=q
=1/2�. Before explaining the numerical results, let us re-
member that the ordinary RSOS model is well known to
satisfy the dynamical scaling

W2�L,t� =
1

2�KG
ln�L g�t/LzW�� , �2�

where KG=KG
o =0.916 and zW=2 �12�. The results for Ws are

first explained.
Figure 1 shows Ws

2 for the growth models with z=−1, 0.5,
0, 0.5, 1, 1.5. From the slope of the linear fit of Ws

2 to ln L
and the relation Ws

2= �1/2�KG�ln L, we find that KG


0.916�5� for all z, which is nearly the same as KG
o . In

contrast the slope of the linear fit of Ws
2 to ln L for the dimer

model yields 1 / �2�KG
A�=0.161�1��KG

A =0.989�6��, which is
the same result as Ref. �11�. For more accurate estimation we
use the effective slope �1/ �2�KG��ef f = �Ws

2�2L�
−Ws

2�L�� / �ln�2L�−ln�L��. The effective slopes are displayed
in the inset of Fig. 1. From the data in the inset, we can
estimate the limiting value of �1/ �2�KG��ef f in the limit
L→
 as 0.176�5� for various z and 0.159�3� for the dimer
model. Even considering the measurement errors in the inset,
the effective slopes for various z are completely different
from that for the dimer model. From KG

A �KG
o for the dimer

model, they argued that there is a correction term ln�ln L1/4�
�11�. However there should be no such correction for z�1,
since KG for various z is nearly the same as KG

o . We find the
leading corrections for z�1 are small constants. Effective

FIG. 1. Plots of Ws
2 against ln L for the growth models from

partition function �1� with z=−1 �2P model�, −0.5, 0, 0.5, 1, 1.5,
and for the dimer model. The slope of a straight-line fit yields the
same value of KG
0.916�5� for all z. The slope for the dimer
model gives KG=KG

A 
0.989�6�. The inset shows the plot of the
effective slope �1/ �2�KG��ef f against 1 /L.
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slopes for the trimer model, QP models and the dimer models
with monomer diffusion are also estimated. Effective slopes
for the trimer model, the three-particle �3P� model, and
dimer model with monomer diffusion, which are not shown
for simplicity, are almost the same as those in the inset of
Fig. 1. They are also completely different from that for the
dimer model, especially the dimer model with monomer dif-
fusion, which has better ergodic behavior than the simple
dimer model and has KG=0.916�5�
KG

o . The results for Ws

suggest that Ws for the growth model from partition function
�1�, QP models, and Q-mer models with Q�3 all show the
same scaling behavior. However, Ws only for the dimer
model shows the anomalous behavior. The anomalous behav-
ior is sure to come from the sector-dependent behavior as in
one dimension �3,4� and is not the intrinsic property of the
global evenness constraint or of the partition function �1�.
This conclusion is strongly supported by the fact that the
dimer model with monomer diffusion never shows such
anomalous behavior.

Next we want to report the results for the dynamical be-
havior of the equilibrium surfaces. The time dependence of
W�L , t� of the model with z=−0.5 is shown in the lower inset
of Fig. 2. By assuming the dynamical scaling ansatz �2� and
by comparing the slope 1/ �2�KGzW� of W2�t�LzW� to
1 / �2�KG� of Ws

2, we can decide the dynamical exponent zW.
From the slope of the linear fit of W2�t� to ln t,
1 / �2�KGzW�
0.071 is obtained. For more accurate estima-
tion we also measured the effective slope �1/2�KGzW�ef f

= �W2�3t�−W2�t�� / �ln�3t�−ln�t��, which was shown in the
upper inset of Fig. 2. After initial transients, the stabilized
time zone for �1/ �2�KGzW��ef f =0.071 is found. From the
result 1 / �2�KGzW�=0.071�2�, the estimated zW is zW

=2.5�1�, which is clearly distinct from the normal EW value
of zW=2. We also check the dynamical scaling relation of Eq.
�2� by plotting W2−Ws

2 against t /LzW with zW=2.5. As shown
in main plot in Fig. 2, the data collapse well to the scaling

function �2� with KG=0.916 and zW=2.5. We also find that
zW’s for the models with various z, the QP model, the dimer
model with monomer diffusion, and the trimer model satisfy
zW=2.5�1�.

Now we discuss growing �eroding� surfaces �p�q�. Here
we mainly discuss the results for p=1. It is well known that
the monomer-type growth model belongs to the Kardar-
Parisi-Zhang �KPZ� universality class �8,10�. The KPZ class
in two dimensions means the scaling behavior W�L , t�
=L�f�t /LzW� with �
2/5, zW=� /	
1/4 �8,10�. According
to the recent studies �14,15� the exponents may not be exact
fractional numbers in two dimensions. We find that W�L , t�
for p=1 in the growth model with z=0, 0.5, 1, 1.5 is found to
satisfy the known KPZ behavior as shown in Ref. �5�. This
result means that the dynamical scaling behavior of the
growing �eroding� surfaces for the models with z�0 is the
same as that of the ordinary RSOS model �z=1�.

In contrast, the growing surface for z�0 shows com-
pletely different behavior. In order to extract the saturation
regime �t�LzW� property correctly, we introduce an effective
roughness exponent �ef f as �ef f�L�=ln�Ws�2L� /Ws�L�� / ln 2.
The estimation of �ef f for z=−0.5 and the 2P model �z=
−1� is displayed in Fig. 3. From the data in Fig. 3, the
asymptotic value of �ef f in the limit L→
 is estimated as
�ef f�
�=0.99�2� for z=−0.5 and �ef f�
�=1.01�2� for 2P
model �z=−1�. We have also checked � for several other
values z�0. All obtained results for z�0 is �ef f�
�
1. We
also study the early-time behavior of W�t� for z�0 on the
substrate with the size L=27, which is displayed in the inset
of Fig. 3. Initially W�t� follows the ordinary power-law be-
havior W
 t	 with 	=0.22–0.23. After the initial regime a
rapid growth occurs before W�t� reaches the saturated re-
gime. In the morphology study, we also find nearly the same
behavior to that on a 1D substrate �4,7�. After the initial
regime the grooved structure that makes �=1 due to the
stochastic evenness constraint appears as in the 1D case

FIG. 2. The data collapse of W�L , t� for the models with z
=−0.5 �main figure�. The lower inset shows the plot of W2 against
ln t for z=−0.5. The straight line in the lower inset means the linear
fit of W2�t�LzW� to ln t. From the fit, 1 / �2�KGzW�=0.071�2� is
obtained. The upper inset shows the plot of effective slope
�1/ �2�KGzW��ef f against t.

FIG. 3. Effective roughness exponents �ef f vs 1/L for the model
with z=−0.5 �circles in the main plot� and the 2P model �z=−1�
�triangles in the main plot�. The asymptotic values of �ef f for both
models in the limit L→
 are nearly close to 1. The early-time
behaviors of W�t� on the substrate with L=27 for the model with
z=−0.5 is shown in the inset.
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�4,7�. We have also studied the growing surfaces for the 3P
model and found almost the same behaviors to those in Fig.
3. The growing surfaces for the Q-mer models have been
confirmed to show very complex faceted structure as on a 1D
substrate �2,4�.

In summary, the dynamical scaling behavior of the equi-
librium surfaces follows Eq. �2� with KG=KG

0 =0.916�5� and
zW=2.5�1� very well for all kinds of the growth models with
global constraints except for the dimer model. This result
means that the scaling relation with zW=2.5, which is distinct
from EW-like scaling with zW=2, is very robust against the
various global constraints. For growing �eroding� surfaces,
the normal KPZ behavior occurs for the growth models with
z�0. The models with z�0 and QP models manifest the
grooved structure with �=1 due to the global constraints.

Possible experimental realizations of dimer �Q-mer� mod-
els were explained in Ref. �11�. In such a real system the
diffusion of an atom within the same terrace can easily hap-
pen from the thermal noises. Furthermore if the jumps up or
down to a new terrace, which break the modulo-2 conserva-
tion at each height level are experimentally suppressed due
to the so-called Schwoebel barriers �16�, then the dimer
model with monomer diffusion is much more easily realized.
The 2P model is very close to the dimer model with large-
ranged diffusions or with diffusions of a large diffusion con-
stant. The 2P model is thus a more efficient model for dimer
model with diffusion.

The anomalous behavior of the dimer models in both one
and two dimensions should come from the nonergodic
sector-dependent behavior. To form a dimer for deposition or

evaporation, one site should be selected from the first sublat-
tice of the base square lattice and the other should be from
the second sublattice. This rather special formation of a

dimer makes the Fourier-transformed surface heights h̄�k��
with kx=2� /2 and ky =2� /2 in two dimensions and h̄�k�
with k=2� /2 in one dimension conserve. To break this kind
of sector-dependent behavior of the dimer model, one can
use the 2P model or the dimer model with monomer diffu-
sion.

The partition function �1� has a symmetry under the trans-
formation z→1/z, since Z�1/z�=��h�r����h=hmin

hmax 1
2 �1+ �1/z�nh�

= �1/zL�Z�z�. The equilibrium property is thus invariant un-
der the mapping z→1/z. The model with z=
 is the same as
the SF model with z=0. From this partition function symme-
try and the argument of the stability of the SF model �z=0�
in RG transformations �7�, we can understand the behavior
Ws= �1/ �2�KG

o ��ln L for any z��−1�.
The global constraints we treated here are a relevant per-

turbation to the EW fixed point. The continuum equation to
describe the constrained models must contain a global-type
nonlinear term, which can explain the distinct universality
class of the constrained models in both one and two dimen-
sions. The future study in this direction is very important,
even though it should be very difficult.
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